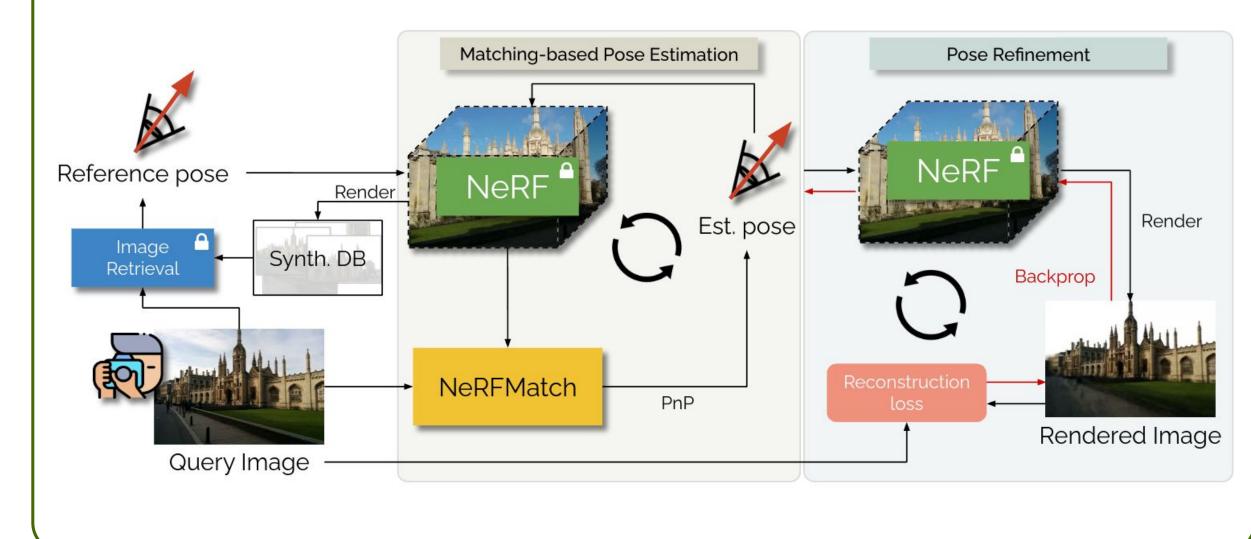


Introduction

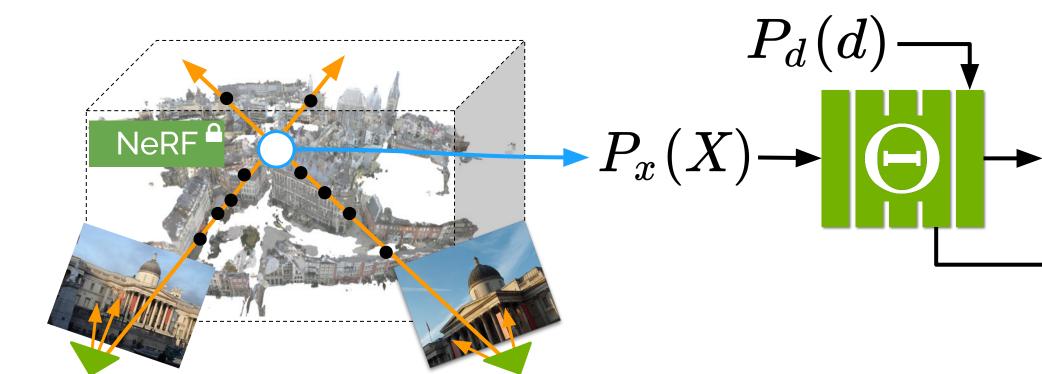

Motivation

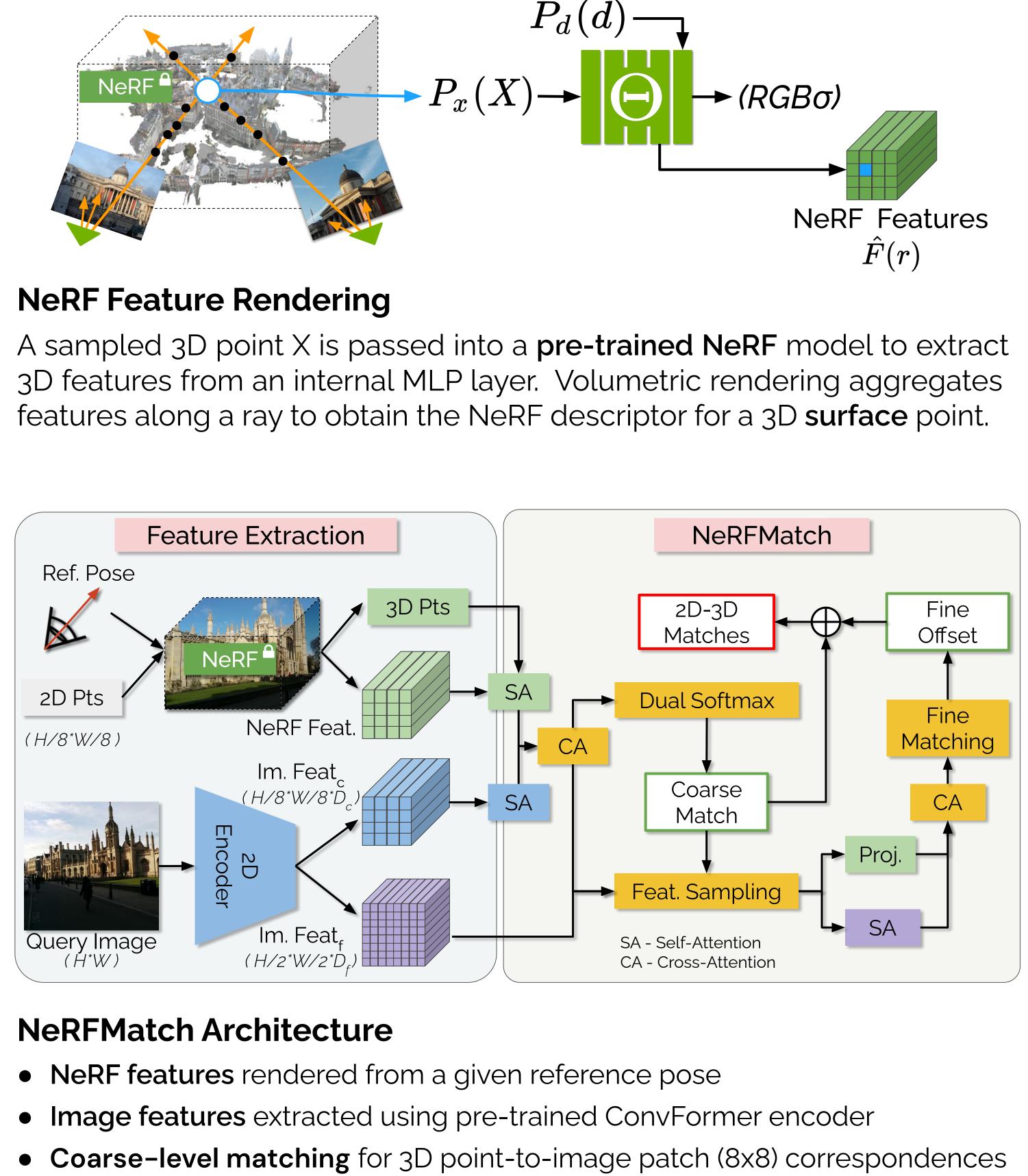
Given a RGB query image, our goal is to localize its camera pose w.r.t a 3D scene. We propose to use NeRF as a *compact* and *interpretable* dense scene representation for visual localization.

NeRF-based Localization

- Our hierarchical NeRF-based localization pipeline directly estimates 2d-3d correspondences between a query image and the scene representation without keeping an expensive 3D point cloud of the scene.
- Compared to other NeRF-based localization, we use NeRF as the primary scene representation without re-training or modifications.

NeRF Features

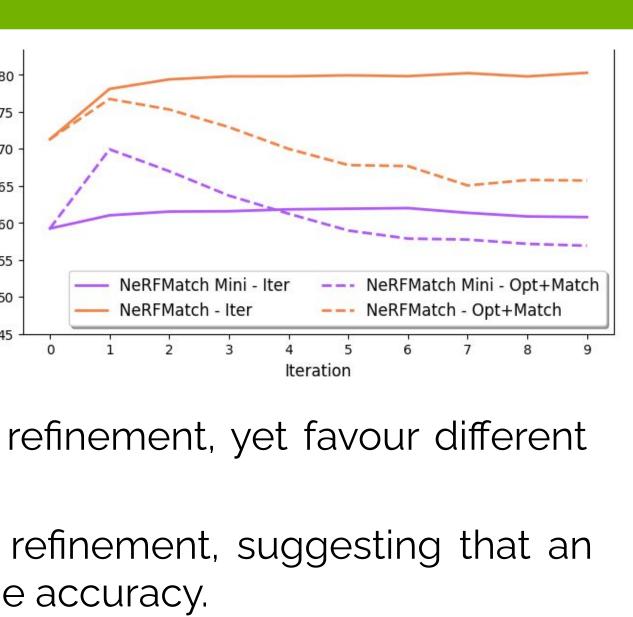

Metrics	Pt3D	Pe3D	f^1	f^2	f^3	f^4	f^5	f^6	f^7
Med. Translation (cm,\downarrow)	458.0	34.3	28.7	28.4	27.9	28.3	28.3	30.2	61.3
Med. Rotation $(^{\circ}, \downarrow)$	6.5	0.6	0.5	0.5	0.5	0.5	0.5	0.5	1.3
Localize Recall. $(\%, \uparrow)$	0.7	51.4	58.6	59.4	59.2	56.9	57.7	53.0	38.8


- Raw 3D coordinate features do not yield accurate results, yet performance improves significantly by encoding it with a positional encoding layer.
- NeRF-encoded features are generally more effective for matching with 2D image features, with the middle 3rd layer showing the best results.

The NeRFect Match: **Exploring NeRF Features for Visual Localization**

Qunjie Zhou¹ Maxim Maximov^{1,2} Or Litany^{1,3} Laura Leal-Taixé¹ ¹ NVIDIA ² TU Munich ³ Technion

NeRFMatch Model



- Fine-level matching for 3D point-to-image patch (2x2) correspondences

Ablation Study

Pose Refinement

Model	Best	No Refinement	Refined	$\begin{array}{c} \text{Refined} \\ (\text{top}{-10}) \end{array}$	
Model	Refinement	(top-1)	(top-1)		
Metrics		Avg.Med (cr	$(n/^{\circ})\downarrow/$ Avg.R	lecall (%) \uparrow	
NeRFMatch-Mini	Opt+Match	27.9/0.5/59.2	20.5/0.4/70.9	20.5/0.4/70	
NeRFMatch	Iter.	16.5/0.3/71.3	14.2/0.3/78.2	13.3/0.3/8	

- Different matching model both benefit from refinement, yet favour different strategies based on initial accuracy.
- There is a clear limit on improvement from refinement, suggesting that an accurate initial estimation is still the key to the accuracy.

Comparison to SOTA

	Method	Scene	Cambridge Landmarks - Outdoor							
	nicolio a	Repres.	Kings	Hospital	Shop	StMary	Court	Avg.Med \downarrow		
	MS-Trans. [56]	APR Net.	83/1.5	181/2.4	86/3.1	162/4	-	-		
pu	DFNet [17]	APR Net.	73/2.4	$200\ /3$	67/2.2	137/4	-	-		
Ē	LENS [44]	APR Net.	33/0.5	44/0.9	27/1.6	53/1.6	-	-		
-to-	NeFeS 16	APR+NeRF	37/0.6	55/0.9	14/0.5	32/1	_	-		
nd-	$DSAC^*$ [10]	SCR Net.	15/0.3	21/0.4	5/0.3	13/0.4	49/0.3	20.6/0.3		
E	HACNet [36]	SCR Net.	18/0.3	19/ 0.3	6/0.3	9/0.3	28/0.2	16/0.3		
	ACE $[6]$	SCR Net.	28/0.4	31/0.6	5/0.3	18/0.6	43/0.2	25/0.4		
al	SANet [72]	3D+RGB	32/0.5	32/0.5	10/0.5	16/0.6	328/2.0	83.6/0.8		
	DSM [62]	SCR Net.	19/0.4	24/0.4	7/0.4	12/0.4	44/0.2	21.2/0.4		
	NeuMap [63]	$\operatorname{SCode}+\operatorname{RGB}$	14/ 0.2	19/0.4	6/0.3	17/0.5	$\mathbf{6/0.1}$	12.4/0.3		
	InLoc [60]	$3D{+}RGB$	46/0.8	48/1.0	11/0.5	18/0.6	120/0.6	48.6/0.7		
nic	HLoc 51	3D+RGB	12/ 0.2	15/0.3	4/0.2	$\mathbf{7/0.2}$	16/ 0.1	10.8/ 0.2		
acl	PixLoc 53	3D+RGB	14/ 0.2	16/ 0.3	5/0.2	10/0.3	30/ 0.1	15/ 0.2		
H	CrossFire [43]	NeRF+RGB	47/0.7	43/0.7	20/1.2	39/1.4	-	_		
	NeRFLoc 38	NeRF+RGBD	$\mathbf{11/0.2}$	18/0.4	$\mathbf{4/0.2}$	7/0.2	25/ 0.1	13/ 0.2		
	NeRFMatch-Mini	NeRF+RGB	19.0/0.3	30.2/0.6	10.3/0.5	11.3/0.4	29.1/0.2	20.0/0.4		
	NeRFMatch	NeRF+RGB	13.0/ 0.2	19.4/0.4	8.5/0.4	7.9/0.3	17.5/ 0.1	13.3/0.3		
	NeRFMatch	NeRF	12.7/ 0.2	20.7/0.4	8.7/0.4	11.3/0.4	19.5/ 0.1	14.6/0.3		

Method	Scene	7-Scenes - SfM Poses - Indoor								
mounou	Repres.	Chess	Fire	Heads	Office	Pump.	Kitchen	Stairs	$\mathrm{Avg.Med}{\downarrow}$	$Avg.Recall\uparrow$
MS-Trans. 56	APR Net.	11/6.4	23/11.5	13/13	18/8.1	17/8.4	16/8.9	29/10.3	18.1/9.5	-
DFNet [17]	APR Net.	3/1.1	6/2.3	4/2.3	6/1.5	7/1.9	7/1.7	12/2.6	6.4/1.9	-
NeFeS [16]	APR+NeRF	2/0.8	2/0.8	2/1.4	2/0.6	2/0.6	2/0.6	5/1.3	2.4/0.9	-
DSAC* [10]	SCR Net.	0.5/0.2	0.8/0.3	0.5/0.3	1.2/0.3	1.2/0.3	0.7/0.2	2.7/0.8	1.1/0.3	97.8
ACE [6]	SCR Net.	0.7/0.5	0.6/0.9	0.5/0.5	1.2/0.5	1.1/0.2	0.9/0.5	2.8/1.0	1.1/0.6	97.1
DVLAD+R2D2 [48,64]	3D+RGB	0.4/0.1	0.5/0.2	0.4/0.2	0.7/0.2	0.6/0.1	0.4/0.1	2.4/0.7	0.8/0.2	95.7
HLoc [51]	3D+RGB	0.8/0.1	0.9/ 0.2	0.6/0.3	1.2/ 0.2	1.4/0.2	1.1/ 0.1	2.9/0.8	1.3/0.3	95.7
NeRFMatch-Mini	NeRF+RGB	1.6/0.5	1.5/0.6	1.4/0.9	3.6/1.0	3.5/0.9	1.7/0.5	8.5/2.1	3.1/0.9	74.4
NeRFMatch	NeRF+RGB	0.9/0.3	1.1/0.4	1.4/1.0	3.0/0.8	2.2/0.6	1.0/0.3	9.0/1.5	2.7/0.7	78.2
NeRFMatch	NeRF	0.9/0.3	1.1/0.4	1.5/1.0	3.0/0.8	2.2/0.6	1.0/0.3	10.1/1.7	2.8/0.7	78.4

Insights

- better than SCR / APR methods for larger scenes.
- the domain gap between rendered and real images.

Conclusions

- Initial steps towards leveraging NeRF as the primary **representation** for the task of visual localization.
- Thorough studies conducted on architectural design, 3D feature extraction and training strategies, we demonstrate inherent capability of NeRF features to effectively support 2D-3D matching, resulting in competitive outdoor visual localization.
- Our model directly **benefits from more accurate and** efficient NeRF models for improved localization performance..

• Competitive outdoor localization on Cambridge Landmarks where we scale

• Noticeable indoor performance gap on 7-Scenes due to the lack of accurate depth prediction needed for precise *centimeter-level* supervision.

• Slight performance decrease when switching to synthesized images due to

Refer to our paper †0ľ more details !

